4756 (FP2) Further Methods for Advanced Mathematics

	2 2 4 5		<u> </u>
(a)(i)	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \dots$		
	$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} \dots$	B1	Series for $ln(1 - x)$ as far as x^5 s.o.i.
	$\ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$	M1	Seeing series subtracted
	$= 2x + \frac{2x^3}{3} + \frac{2x^5}{5} \dots$	A1	
	Valid for −1 < <i>x</i> < 1	B1 4	Inequalities must be strict
(ii)	$\frac{1+x}{1-x} = 3$		
	$\Rightarrow 1 + x = 3(1 - x)$ $\Rightarrow 1 + x = 3 - 3x$ $\Rightarrow 4x = 2$	M1	Correct method of solution
	$\Rightarrow x = \frac{1}{2}$	A1	B2 for $x = \frac{1}{2}$ stated
	In $3 \approx 2 \times \frac{1}{2} + \frac{2}{3} \times \left(\frac{1}{2}\right)^3 + \frac{2}{5} \times \left(\frac{1}{2}\right)^5$	M1	Substituting their x into their series in (a) (i), even if outside range of validity. Series must have at least two terms
	$= 1 + \frac{1}{12} + \frac{1}{80}$ = 1.096 (3 d.p.)	A1 4	SR: if >3 correct terms seen in (i), allow a better answer to 3 d.p. Must be 3 decimal places
(b)(i)	v /	-	
	-0.5	G1 G1 G1	$r(0) = a, r(\pi/2) = a/2$ indicated Symmetry in $\theta = \pi/2$ Correct basic shape: flat at $\theta = \pi/2$, not vertical or horizontal at ends, no dimple Ignore beyond $0 \le \theta \le \pi$
(ii)	$r + y = r + r \sin \theta$	M1	Using $y = r \sin \theta$
	$= r(1 + \sin \theta) = \frac{a}{1 + \sin \theta} \times (1 + \sin \theta)$		
	$= a$ $\Rightarrow r = a - y$	A1 (ag)	
	$\Rightarrow x^2 + y^2 = (a - y)^2$	M1 A1	Using $r^2 = x^2 + y^2$ in $r + y = a$ Unsimplified
	$\Rightarrow x^2 + y^2 = a^2 - 2ay + y^2$ \Rightarrow 2ay = a^2 - x^2	A1	A correct final answer, not spoiled
	$\Rightarrow y = \frac{a^2 - x^2}{2a}$		
		5	16

2 (i)	$\mathbf{M} - \lambda \mathbf{I} = \begin{pmatrix} 3 - \lambda & 1 & -2 \\ 0 & -1 - \lambda & 0 \\ 2 & 0 & 1 - \lambda \end{pmatrix}$		Attempt at det(M – λ I) with all
	$\det(\mathbf{M} - \lambda \mathbf{I}) = (3 - \lambda)[(-1 - \lambda)(1 - \lambda)] + 2[2(-1 - \lambda)]$	M1	elements present. Allow sign errors
	$= (3 - \lambda)(\lambda^2 - 1) + 4(-1 - \lambda)$	A1	Unsimplified. Allow signs reversed. Condone omission of = 0
	$\Rightarrow \lambda^3 - 3\lambda^2 + 3\lambda + 7 = 0$ $\det \mathbf{M} = -7$	B1 3	
/ii\	$f(\lambda) = \lambda^3 - 3\lambda^2 + 3\lambda + 7$	3	
(11)	$f(-1) = -1 - 3 - 3 + 7 = 0 \Rightarrow -1$ eigenvalue $f(\lambda) = (\lambda + 1)(\lambda^2 - 4\lambda + 7)$ $\lambda^2 - 4\lambda + 7 = (\lambda - 2)^2 + 3 \ge 3$ so no real roots $(\mathbf{M} - \lambda \mathbf{I})\mathbf{s} = 0, \ \lambda = -1$	B1 M1 A1	Showing –1 satisfies a correct characteristic equation Obtaining quadratic factor www (M – λ I) s = (λ) s M0 below
	$\Rightarrow \begin{pmatrix} 4 & 1 & -2 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$		
	$\Rightarrow 4x + y - 2z = 0$ $2x + 2z = 0$	M1	Obtaining equations relating <i>x</i> , <i>y</i> and <i>z</i>
	$\Rightarrow x = -z$ $y = 2z - 4x = 2z + 4z = 6z$	M1	Obtaining equations relating two variables to a third. Dep. on first M1
	$\Rightarrow \mathbf{s} = \begin{pmatrix} -1 \\ 6 \\ 1 \end{pmatrix}$	A1	Or any non-zero multiple
	$ \begin{vmatrix} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{vmatrix} \begin{pmatrix} x \\ y \\ z \end{vmatrix} = \begin{pmatrix} -0.1 \\ 0.6 \\ 0.1 \end{pmatrix} $	M1	Solution by any method, e.g. use of multiple of s , but M0 if s itself quoted without further work
	$\Rightarrow x = 0.1, y = -0.6, z = -0.1$	A2 9	Give A1 if any two correct
(iii)	C-H: a matrix satisfies its own characteristic equation $\Rightarrow \mathbf{M}^3 - 3\mathbf{M}^2 + 3\mathbf{M} + 7\mathbf{I} = 0$	B1	Idea of $\lambda \leftrightarrow M$
	$\Rightarrow M^3 = 3M^2 - 3M - 7I$	B1 (ag)	Must be derived www. Condone omitted I
	$\Rightarrow \mathbf{M}^2 = 3\mathbf{M} - 3\mathbf{I} - 7\mathbf{M}^{-1}$	M1	Multiplying by M ⁻¹
	$\Rightarrow \mathbf{M}^{-1} = -\frac{1}{7}\mathbf{M}^2 + \frac{3}{7}\mathbf{M} - \frac{3}{7}\mathbf{I}$	A1 4	o.e.
(iv)	$\mathbf{M}^2 = \begin{pmatrix} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 & -8 \\ 0 & 1 & 0 \\ 8 & 2 & -3 \end{pmatrix}$	M1	Correct attempt to find M ²
	$\begin{bmatrix} -\frac{1}{7} \begin{pmatrix} 5 & 2 & -8 \\ 0 & 1 & 0 \\ 8 & 2 & -3 \end{pmatrix} + \frac{3}{7} \begin{pmatrix} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix} - \frac{3}{7} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	M1	Using their (iii)
	$= \begin{pmatrix} \frac{1}{7} & \frac{1}{7} & \frac{2}{7} \\ 0 & -1 & 0 \\ -\frac{2}{7} & -\frac{2}{7} & \frac{3}{7} \end{pmatrix} \text{ or } \frac{1}{7} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -7 & 0 \\ -2 & -2 & 3 \end{pmatrix}$	A1	SC1 for answer without working

OR Matrix of cofactors: $\begin{pmatrix} -1 & 0 & 2 \\ -1 & 7 & 2 \\ -2 & 0 & -3 \end{pmatrix}$ M1	Finding at least four cofactors
Adjugate matrix $\begin{pmatrix} -1 & -1 & -2 \\ 0 & 7 & 0 \\ 2 & 2 & -3 \end{pmatrix}$: det M = -7 M1	Transposing and dividing by determinant. Dep. on M1 above
, ,	3

2/5//:	1	I	
3(a)(i)			
		G1	Correct basic shape (positive
	$y = \arcsin x \Rightarrow \sin y = x$	1 M1	gradient, through $(0, 0)$) $\sin y = \text{ and attempt to diff. both}$
	$\Rightarrow \frac{dx}{dy} = \cos y$	A1	sides Or $\cos y \frac{dy}{dx} = 1$
	$\Rightarrow \frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$	A1	www. SC1 if quoted without working
	Positive square root because gradient positive	B1 4	Dep. on graph of an increasing function
(ii)	$\int_{0}^{1} \frac{1}{\sqrt{2-x^2}} dx = \left[\arcsin \frac{x}{\sqrt{2}} \right]_{0}^{1}$	M1	arcsin function alone, or any sine substitution
()	0 V 2 X	A1	$\frac{x}{\sqrt{2}}$, or $\int 1 d\theta$ www without limits
	$=\frac{\pi}{4}$	A1 3	Evaluated in terms of π
(b)	$C + jS = e^{j\theta} + \frac{1}{3}e^{3j\theta} + \frac{1}{9}e^{5j\theta} + \dots$	M1	Forming C + jS as a series of powers
	This is a geometric series	M1	Identifying geometric series and attempting sum to infinity or to <i>n</i> terms
	with first term $a = e^{j\theta}$, common ratio $r = \frac{1}{3}e^{2j\theta}$	A1	Correct a and r
	Sum to infinity = $\frac{a}{1-r} = \frac{e^{j\theta}}{1 - \frac{1}{3}e^{2j\theta}} (= \frac{3e^{j\theta}}{3 - e^{2j\theta}})$	A1	Sum to infinity Multiplying numerator and
	$= \frac{3e^{j\theta}}{3 - e^{2j\theta}} \times \frac{3 - e^{-2j\theta}}{3 - e^{-2j\theta}}$	M1*	denominator by $1-\frac{1}{3}e^{-2j\theta}$ o.e. Or writing in terms of trig functions and realising the denominator
	$= \frac{9e^{j\theta} - 3e^{-j\theta}}{9 - 3e^{-2j\theta} - 3e^{2j\theta} + 1}$	M1	Multiplying out numerator and denominator. Dep. on M1*
	$= \frac{9(\cos\theta + j\sin\theta) - 3(\cos\theta - j\sin\theta)}{10 - 3(\cos 2\theta - j\sin 2\theta) - 3(\cos 2\theta + j\sin 2\theta)}$	M1	Valid attempt to express in terms of trig functions. If trig functions used from start, M1 for using the compound angle formulae and Pythagoras Dep. on M1*
	$=\frac{6\cos\theta+12j\sin\theta}{10-6\cos2\theta}$	A1	
	$\Rightarrow C = \frac{6\cos\theta}{10 - 6\cos 2\theta}$	M1	Equating real and imaginary parts. Dep. on M1*

$=\frac{3\cos\theta}{5-3\cos2\theta}$	A1 (ag)	
$S = \frac{6\sin\theta}{5 - 3\cos 2\theta}$	A1	o.e.
	11	19

		1
4 (i) $\cosh u = \frac{e^u + e^{-u}}{2}$		
$\Rightarrow 2 \cosh^2 u = \frac{e^{2u} + 2 + e^{-2u}}{2}$	B1	$(e^{u} + e^{-u})^{2} = e^{2u} + 2 + e^{-2u}$
$\Rightarrow 2 \cosh^2 u - 1 = \frac{e^{2u} + e^{-2u}}{2}$	B1	$\cosh 2u = \frac{e^{2u} + e^{-2u}}{2}$
= cosh 2u	B1 (ag)	Completion www
(ii) $x = \operatorname{arsinh} y$ $\Rightarrow \operatorname{sinh} x = y$		
$\Rightarrow y = \frac{e^x - e^{-x}}{2}$	M1	Expressing <i>y</i> in exponential form $(\frac{1}{2}, -\text{must be correct})$
$\Rightarrow e^{2x} - 2ve^x - 1 = 0$		
$\Rightarrow (e^{x} - y)^{2} - y^{2} - 1 = 0$ \Rightarrow (e^{x} - y)^{2} = y^{2} + 1		
$\Rightarrow e^{x} - y = \pm \sqrt{y^{2} + 1}$		Reaching e^x by quadratic formula
$\Rightarrow e^{x} = y \pm \sqrt{y^{2} + 1}$	M1	or completing the square. Condone no ±
Take + because e ^x > 0	B1	Or argument of In must be positive
$\Rightarrow x = \ln(y + \sqrt{y^2 + 1})$	A1 (ag)	Completion www but independent of B1
	4	
(iii) $x = 2 \sinh u \Rightarrow \frac{dx}{du} = 2 \cosh u$	M1	$\frac{dx}{du}$ and substituting for all
$\int \sqrt{x^2 + 4} dx = \int \sqrt{4 \sinh^2 u + 4} \times 2 \cosh u du$	A1	Substituting for all elements
$= \int 4\cosh^2 u \ du$		correctly
$= \int 2\cosh 2u + 2 \ du$	M1	Simplifying to an integrable form
$= \sinh 2u + 2u + c$	A1	Any form, e.g. $\frac{1}{2}e^{2u} - \frac{1}{2}e^{-2u} + 2u$ Condone omission of + c
$= 2 \sinh u \cosh u + 2u + c$		throughout
$= x\sqrt{1 + \frac{x^2}{4}} + 2 \operatorname{arsinh} \frac{x}{2} + c$	M1	Using double "angle" formula and attempt to express cosh <i>u</i> in
4 2		terms of x
$= \frac{1}{2}x\sqrt{4+x^2} + 2 \operatorname{arsinh} \frac{x}{2} + c$	A1 (ag) 6	Completion www
(iv) $t^2 + 2t + 5 = (t+1)^2 + 4$ $\int_{-1}^{1} \sqrt{t^2 + 2t + 5} dt = \int_{-1}^{1} \sqrt{(t+1)^2 + 4} dt$	B1	Completing the square
$\int_{-1}^{1} \sqrt{t^2 + 2t + 5} dt = \int_{-1}^{1} \sqrt{(t+1)^2 + 4} dt$		
	M1	Simplifying to an integrable form, by substituting $x = t + 1$ s.o.i. or
$= \int_0^2 \sqrt{x^2 + 4} \ dx$	A1	complete alternative method Correct limits consistent with
$= \left[\frac{1}{2}x\sqrt{4+x^2} + 2\operatorname{arsinh}\frac{x}{2}\right]_0^2$		their method seen anywhere
$\begin{bmatrix} -\frac{1}{2}x\sqrt{4+x} + 2aisinin\frac{1}{2} \end{bmatrix}_0$		

= √	√8 + 2 arsinh 1	M1	Using (iii) or otherwise reaching the result of integration, and using limits	J
	$2\sqrt{2} + 2 \ln(1 + \sqrt{2})$ $2(\ln(1 + \sqrt{2}) + \sqrt{2})$	A1 (ag) 5	Completion www. Condone $\sqrt{8}$ etc.	18

5 (1)	II. 4 L 00D 450	1	T
5 (1)	If $a = 1$, angle OCP = 45° so P is $(1 - \cos 45^{\circ}, \sin 45^{\circ})$	M1	
	$\Rightarrow P(1-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$	A1 (ag)	Completion www
	OR Circle $(x-1)^2 + y^2 = 1$, line $y = -x + 1$ $(x-1)^2 + (-x + 1)^2 = 1$ M1		Complete algebraic method to
	$\Rightarrow x = 1 \pm \frac{1}{\sqrt{2}}$ and hence P A1		find x
	Q $(1 + \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$	B1 3	
(ii)	$\cos OCP = \frac{a}{\sqrt{a^2 + 1}}$	M1	Attempt to find cos OCP and sin OCP in terms of a
	$\sin OCP = \frac{1}{\sqrt{a^2 + 1}}$	A1	Both correct
	P is $(a - a \cos OCP, a \sin OCP)$ $\Rightarrow P(a - \frac{a^2}{\sqrt{a^2 + 1}}, \frac{a}{\sqrt{a^2 + 1}})$	A1 (ag)	Completion www
	OR Circle $(x-a)^2 + y^2 = a^2$, line $y = -\frac{1}{2}x+1$		
	$(x-a)^2 + \left(-\frac{1}{a}x+1\right)^2 = a^2$ M1		Complete algebraic method to find <i>x</i>
	$\Rightarrow x = \frac{2a + \frac{2}{a} \pm \sqrt{\left(2a + \frac{2}{a}\right)^2 - 4\left(1 + \frac{1}{a^2}\right)}}{2\left(1 + \frac{1}{a^2}\right)}$ A1		Unsimplified
	$\Rightarrow x = a \pm \frac{a^2}{\sqrt{a^2 + 1}}$ and hence P A1		
	Q $(a + \frac{a^2}{\sqrt{a^2 + 1}}, -\frac{a}{\sqrt{a^2 + 1}})$	B1 4	
(iii)	As $a \to \infty$, $P \to (0, 1)$ As $a \to -\infty$, y co-ordinate of $P \to -1$ $\frac{a}{\sqrt{a^2 + 1}} \to \frac{a}{-a} = -1 \text{ as } a \to -\infty$	G1 G1 G1 G1ft B1 B1 M1 A1	Locus of P (1 st & 3 rd quadrants) through (0, 0) Locus of P terminates at (0, 1) Locus of P: fully correct shape Locus of Q (2 nd & 4 th quadrants: dotted) reflection of locus of P in y-axis Stated separately Stated Attempt to consider y as $a \rightarrow -\infty$ Completion www
(iv)	POQ = 90° Angle in semicircle	8 B1 B1	o.e.
	Loci cross at 90°	B1 3	